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(Associació Catalana de Meteorologia)

Involving human forecasters in numerical prediction systems
Vı́ctor Homar1 and David Stensrud2

1Grup de Meteorologia. Departament de Fı́sica. Universitat de les Illes Balears
2National Severe Storms Laboratory. National Oceanic and Atmospheric Administration. USA

Received: 25-VII-2006 – Accepted: 19-X-2006 – Original version

Correspondence to: victor.homar@uib.es

Abstract

Human forecasters routinely improve upon the output from numerical weather prediction mod-
els and often have keen insight to model biases and shortcomings. This wealth of knowledge
about model performance is largely untapped, however, as it is used only at the end point in
the forecast process to interpret the model-predicted fields. Yet there is no reason why human
forecasters cannot intervene at other earlier times in the numerical weather prediction process,
especially when an ensemble forecasting system is in use. Human intervention in ensemble cre-
ation may be particularly helpful for rare events, such as severe weather events, that are not
predicted well by numerical models. The USA/NOAA SPC/NSSL Spring Program 2003 tested an
ensemble generation method in which human forecasters were involved in the ensemble creation
process. The forecaster highlighted structures of interest and, using an adjoint model, a set of
perturbations were obtained and used to generate a 32-member ensemble. The results show that
this experimental ensemble improves upon the operational numerical forecasts of severe weather.
The human-generated ensemble is able to provide improved guidance on high-impact weather
events, but lacks global dispersion and produces unreliable forecasts for non-hazardous weather
events. Further results from an ensemble constructed by combining the operational ensemble
perturbations with the human-generated perturbations shows promising skill for the forecast of
severe weather while avoiding the problem of limited global dispersion. The value of human
beings in the creation of ensembles designed to target specific high- impact weather events is
potentially large. Further investigation of the value of forecasters being part of the ensemble
creation process is strongly recommended. There remains a lot to learn about how to create en-
sembles for short-range forecasts of severe weather, and we need to make better use of the skill
and experience of human forecasters in this learning process.

1 Introduction

The numerical forecasting of mesoscale phenomena and
severe convective weather poses one of the most challeng-
ing problems faced today in the atmospheric community.
Model physics, resolution and data assimilation techniques
are continuously improving and examples of promising sim-
ulations of severe convective systems can be found in the lit-
erature. However models still do not provide consistently
reliable guidance for operations about important aspects of
severe weather such as initiation, mode, intensity and evo-
lution of convection. Admittedly, short-range mesoscale nu-
merical forecasts are hampered by the largely unknown ob-

servational sampling errors at the meso- and small-scales, as
well as by the deficiencies in the models from such sources
as physical parameterization schemes. Additionally, little is
known about the limits of predictability at the spatial and
temporal scales of intermittent weather systems responsible
for producing severe weather. The perception that multiple
sources of uncertainty may largely degrade the forecast de-
creases the confidence of the forecaster in the output pro-
duced by mesoscale numerical models, even when they pro-
vide highly realistic looking forecasts. Inevitably, observa-
tional dataset errors and model deficiencies, as well as the
predictability concerns, introduce inherent uncertainties that
always are present in the forecast.

2006 Author(s). This work is licensed under a Creative Commons License.



V. Homar and D. Stensrud: Human forecasters in numerical prediction systems 60

Ensemble techniques are one method that can be used
to explicitly account for uncertainties in the numerical fore-
casting system and their use may assist forecasters in assess-
ing appropriate levels of confidence. However, identifying,
quantifying and representing these uncertainties in the fore-
cast system is a complex task. It is well known that combin-
ing the solutions of a number of slightly different numerical
simulations not only produces a forecast that is more skillful
than each individual simulation when examined over many
cases (Leith, 1974), but also provides a quantitative indi-
cation of forecast uncertainty. How these realizations (i.e.
ensemble members) are constructed is currently the subject
of significant attention in the weather research community
(Shapiro and Thorpe, 2004).

Multiple methods to choose an optimum ensemble of
realizations that accounts for the analysis errors have been
proposed. For forecasts in the medium-range, two well estab-
lished strategies have been adopted by the major operational
centers in the United States and Europe. The breeding (Toth
and Kalnay, 1993) and singular vector (Buizza and Palmer,
1995) techniques have provided notable improvements in the
skill of the medium-range forecasts, even without consider-
ing model deficiencies. Unfortunately, accounting for the
initial conditions errors for applications on the mesoscale be-
comes more complex due to the larger and less known analy-
sis error, the large role that physical process parameterization
schemes play in model forecasts of sensible weather, and the
end user’s more sensitive dependence upon reliable forecasts.

Xu et al. (2001) propose a method to generate members
for a short-range ensemble that benefits from forecaster’s
guidance in identifying areas where threatening weather is
likely in the forecast and the atmospheric features that can
influence the development of the threatening weather. The
approach of Xu01 assumes that the experience and skill of
human weather forecasters is a useful addition to the process
of creating ensemble systems. It is well known that forecast-
ers routinely improve upon numerical guidance, as clearly
seen in skill scores for precipitation (Olson et al., 1995, e.g.).
In addition, forecasters at the USA/NOAA/Storm Prediction
Center regularly identify mesoscale-sized regions of signifi-
cant severe weather threat through the issuance of outlooks
and severe weather watches with high level of skill. There
is no reason to assume that this human knowledge and ex-
perience, although subjective, cannot be made useful in the
creation of ensemble members and thereby benefit the oper-
ational forecast process particularly for rare and significant
events.

With the aim of assessing the value of short-range nu-
merical forecast ensembles to assist in the operational fore-
casting of severe weather, the Storm Prediction Center and
the National Severe Storms Laboratory, two USA/NOAA
centers, conducted the 2003 Spring Program (SP03) exper-
iment focused primarily on the generation and interpreta-
tion of mesoscale short- range ensembles. Encouraged by
the promising conclusions of Xu et al. (2001), the SP03 in-
cluded a subexperiment to test their method for a larger num-

ber of cases using operational forecasters as the main drivers
of the system. The underlying idea was to create a daily, cus-
tomized ensemble to provide guidance on the severe weather
threat over the following 48 hours. Essentially, the ensemble
dispersion was intended to be generated in specific areas, and
focused upon specific fields of interest as opposed to every-
where in the domain, or following fast growing modes under
global generic norms. This paper presents an overview of the
verification results of this SP03 test ensemble.

2 Ensemble generation

The forecaster-generated ensemble consists of 32
members produced using the nonhydrostatic Pennsylvania
State University-National Center for Atmospheric Research
(PSUNCAR) Fifth-generation Mesoscale Model (MM5V3,
www.mmm.ucar.edu/mm5/). This test ensemble of the SP03
experiment (MM5ADJ) ran weekdays from April 28 to June
6 (SP03 did not operate on weekends). To generate the set
of different ICs for the ensemble, the method detailed in Xu
et al. (2001) was followed: each day an experienced human
severe weather forecaster was asked to identify 16 features of
interest in the control run that were, in the forecaster’s opin-
ion, important to the potential development and/or evolution
of severe weather on the following day (12 UTC to 12 UTC
day 2). The forecaster was able to select atmospheric struc-
tures at any time (in 6 h intervals) from the 48 h Eta control
forecast. Figure 1a show examples of human-drawn features
of interest for the forecast cycle of May 5 2003.

Each day, for each of the 16 selected features of interest,
an adjoint model integration (Errico, 1997) was correspond-
ingly initialized and the sensitive areas of each forecaster-
specified feature to the IC were derived. The adjoint model
used is the MM5 Adjoint Modeling System developed by Na-
tional Center for Atmospheric Research. Once the sensitiv-
ity fields were obtained from the adjoint, the horizontal wind
components and temperature sensitivities were rescaled to a
maximum amplitude of 8.0 m s-1 and 4.0 K, respectively.
Finally, two MM5 simulations were run for each highlighted
feature, each one using perturbations in both directions (pos-
itive and negative). Figure 1b shows an example of such per-
turbations for the temperature field at 700 hPa. Since the
forecaster was requested to highlight 16 features each day, 32
perturbed simulations were produced to form the MM5ADJ
ensemble.

Although the adjoint model is tangent linear, and
hence the perturbations were defined strictly to change the
forecaster-selected feature in a linear sense, the nonlinear
evolution of the perturbation can be interpreted as a stochas-
tic perturbation to the initial model state trajectory. However,
this stochastic component of the perturbation will likely be
confined about the area of concern in the forecast at the fore-
cast time selected. In essence, by using both positive and
negative perturbations the feature of interest likely is both en-
hanced and reduced equally in the linear sense. The nonlin-
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Figure 1. Example steps from the proposed ensemble generation process: a) Areas and fields selected by the forecaster (here, geopotential
height (GHT), temperature (T), wind components (U,V) and specific humidity (q)); b) Example of initial condition temperature perturbation
at 700 hPa (black contours depict unperturbed temperature, red and blue show positive and negative (i.e. warm and cold) perturbations)
used to generate a single ensemble member and derived from an adjoint model applied to the fields shown in a); and c) Storm reports and
probability of severe weather (orange lines in 25% intervals) as forecast by the test ensemble for the 24 h period beginning on 12 UTC May
5. Dotted lines depict the 5% probabilities.

ear evolution of the positive and negative perturbations, how-
ever, may yield unexpected results since the specified feature
of interest likely is not enhanced and reduced symmetrically
in the two nonlinear forecasts. This nonlinear behavior is
viewed as a positive attribute of the system, ensuring a rich
diversity of solutions among the ensemble members over the
forecaster defined regions of concern as opposed to the trivial
effects of the purely linear evolution of the linearly-derived
perturbations.

3 Verification datasets

The evaluation of the MM5ADJ is based on observa-
tions of severe weather over the continental United States
(CONUS), east of the Rockies. The observational dataset
used for verification is the SPC severe weather reports.
This database contains a real-time list of tornado, large hail
(larger than 20 mm) and convective wind (stronger than 50
knots) damage reports in the United States with information
about the intensity of the event and its location in space and
time. Figure 1c shows an example of the reports in the SPC

database.
In addition to the objective verification against the

observational dataset, the relative value of the MM5ADJ is
assessed by comparing it against the operational short-range
forecasts available for the same period:

• Subjective Day 2 Outlooks: The SP03 forecaster issued
an experimental severe weather outlook for Day 2, fol-
lowing the same guidelines used for the routine opera-
tional SPC outlooks. Since the SPC outlooks are issued
using 5 discrete probability categories: 0.00, 0.05, 0.15,
0.25 and 0.35, and in order to ensure fair comparison
among the considered predictions, all forecasts consid-
ered in this study are truncated onto these categories.

• Operational Eta: The operational 12 UTC daily run
from the NCEP Eta is included to add a reference from
a deterministic model into the comparison.

• NCEP SREF System: The NCEP ensemble for short
range forecasting during SP03 consisted of 10 mem-
bers, five Eta and five Regional Spectral Model (RSM)
members. Unfortunately, owing to problems with the
data archive, only 11 days are available for comparison
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Figure 2. Attributes diagrams for the probability of severe weather as obtained from: SP03 preliminary Day 2 outlooks, T+24 and T+48 h
MM5ADJ, Eta and SREF.

during the period that the SP03 lasted. All results ob-
tained from such small sample of 11 days are comple-
mented with a statistical significance test.

• Practically Perfect Prog: Brooks et al. (2003) discuss
the concept of the practically perfect progs (PPP) and
present the main characteristics. This hypothetical fore-
cast is as accurate as could be expected for a forecaster
already aware of the reports, given the limitations of
real-world forecasting.

4 Verification of severe weather forecasts

Unlike the SPC human-rendered outlooks, current
models do not explicitly forecast severe weather. The
diagnosis of severe weather from analysis or models that do
not explicitly resolve convection can be inferred, at least in
part, through indices that characterize the environment and
may allow some basic discrimination of the type or intensity
of convective phenomena supported. In this study, severe
weather is defined to occur within a grid box when both
the Supercell Composite Parameter (SCP, Thompson et al.
(2002)) > 1 and the triggering of the model’s convective
scheme occur simultaneously. Together, these two quantities
specify regions in which the model jointly predicts an
environment that is favorable for supercell thunderstorms,
and in which convection develops.

Hence, the probability of occurrence of severe weather
during a 24 h period at every grid point is simply defined
as the number of ensemble members having a SCP larger
than 1 and simultaneous convective precipitation at that grid
point anytime during that 24 h period, divided by the total
number of ensemble members. Figure 1c shows an example
of this probability field from the MM5ADJ.

Verification of the probabilistic forecasts for all cases
is done by using the attributes diagram. This diagram
shows the observed frequency of an event as a function of
the forecast category and allows an interpretation of skill
for each forecast category separately. Figure 2 shows the
attributes diagram for all the forecasts compared in this
study. The sample climatological frequency is 0.016 severe
reports per gridpoint during 24 h. Not surprisingly for the
prediction of unlikely events, all forecasts in the comparison
show good skill at predicting no occurrence of severe events
(0.00 probs), with the human outlooks showing the highest
reliability in this category. For low (0.05) and moderate
(0.15) probabilities, the MM5ADJ and SREF are the only
forecasts showing some skill, with especially good reliability
at the low category for the SREF.

For higher probabilities (when a majority of the en-
semble members agree), the MM5ADJ is the only model
showing some skill at the 0.35 probability category and
some resolution still exists between the 0.25 and 0.35
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Figure 3. Mean of the standard deviation of the 36 h forecast, computed at sounding sites. Global values are averaged over the CONUS
east of the Rockies, and the Targeted include only the areas delineated by the forecaster when defining the perturbations. Values above the
bars indicate the percent change from the global to the targeted standard verification. Qll refers to the average of the standard deviation of Q
at 1000, 850 and 700 hPa.

forecasts. The human outlooks, however, show skill at
the high probability categories, revealing the skill of the
forecasters when they show high confidence in the intensity
of the situation of the day and decide to use high probabil-
ities in the outlook. On the other hand, Eta forecasts are
clearly hampered in this type of probabilistic verification,
showing a clear overforecast of severe weather. Although,
the SREF results show almost perfect reliability for the low
category it has no skill for higher probability categories. The
significance of the differences between the MM5ADJ and
SREF results is assessed using a bootstrap non-parametric
test with 10000 samples. Most of the differences between
MM5ADJ and SREF visible in Fig. 2 are significant to
the 99% confidence level. This result clearly shows the
advantage of the MM5ADJ over the SREF in forecasting
probabilities of severe weather at and above 0.15, usually
associated with the more intense and damaging episodes.
This is most likely a consequence of the customized design
of the MM5ADJ to focus on the areas of severe weather
threat, whereas the SREF system is designed to cover a wide
range of mesoscale forecast aspects and shows its strength at
the low probability range.

4.1 Targeted spread

To better understand the differences between the
MM5ADJ and SREF systems in forecasting higher probabil-
ity (0.25) episodes of severe weather, we analyze the ability
of the MM5ADJ to generate spread specifically over the ar-

eas of concern defined by the forecaster. Two versions of the
spread for each model are computed (Figure 3): the Global
spread is the mean of the spread calculated at each sounding
site within the CONUS, east of the Rocky Mountains; the
Targeted spread is computed considering only the forecast at
sounding sites within the areas of concern and times desig-
nated by the forecaster in constructing the ensemble. The
relative increase of spread from the global to the targeted
spread is much larger in the MM5ADJ than in the SREF,
especially in low levels where increases in spread ranging 65
to 70% are obtained. Therefore, the breeding vectors tech-
nique (as well as the model diversity) in the SREF system
produces larger dispersion in a global sense, whereas the cus-
tomized MM5ADJ successfully targets ensemble dispersion
both spatially and temporally over the region selected by the
forecaster.

5 Mixed ensemble test

In order to test the effect of adding members to the
MM5ADJ system that provide spread across the entire
domain, we evaluate the forecast skill of an ensemble
generated by combining the 32 MM5ADJ and 10 SREF
members to produce a 42 member ensemble (42 ENS).
This ensemble not only will benefit from a large number of
members but also from being multimodel and including two
initial conditions perturbation techniques. This ensemble is
still primarily focused on targeting severe weather but may
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Figure 4. As in Fig 2 but for the 42 ENS system.

also benefit from the globally better scores of the 10 SREF
members.

Severe weather forecasts are produced for the 42 ENS
following the same method presented in the previous section.
The bootstrap non-parametric test is also used to assess
the significance of the differences between 42 ENS and
MM5ADJ results. The attributes diagram curve for the 42
ENS forecasts shows the superior skill of this configuration
as compared to the MM5ADJ for almost all probabilities
(Fig. 4). Only for the 15 and 30% categories, the 42 ENS
does not produce results significantly better than MM5ADJ
for both Day 1 and 2.

6 Conclusions

The SPC/NSSL Spring Program 2003 included an
experimental ensemble aimed at testing for an extended
period of time the ensemble generation method of Xu et al.
(2001) who proposed using human forecasters to identify
atmospheric features they believed to be important to the de-
velopment and evolution of severe weather during the 24-48

h forecast period. Using an adjoint model, perturbations to
the forecast model initial conditions that would influence
these forecaster selected atmospheric features are identified
and used to create an ensemble of model forecasts. The
performance of this experimental ensemble is evaluated by
using severe weather reports.

The experiment was designed to run in real-time, with
the initial hope that forecasters would have time to examine
and verify the ensemble forecasts and gain experience in
selecting the perturbation fields, vertical levels, and areas.
Unfortunately, computer limitations did not allow for this
learning experience to happen as the forecasts were available
too late in the day. Thus, the forecasters were only given
basic guidance on how to generate the perturbations. Many
other aspects of the experiment also are imperfect and should
be improved upon in future experiments. Yet the initial
results are suggestive and warrant careful consideration.

Verification results show value in the experimental
ensemble forecasts compared to the operational SREF
system, despite the multiple improvements still possible
to the experimental system. A single model is used in the
experiment, with the human-selected perturbations the only
source of dispersion in the ensemble system. Although basic
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training was provided at the beginning of each experimental
week of SP03 covering the selection of fields, levels, sizes,
and time of the targeted structures, no definitive rules were
made available to the forecasters on the construction of
perturbations, because this had never before been conducted
as a real- time experiment. Additionally, the forecasters had
no previously experience with this type of ensemble creation
and no quantitative feedback was provided to them during
the experiment. Further research might indicate whether
certain sizes, fields and levels are more appropriate to define
the perturbations for specific types of predicted weather.

Despite the lack of previous knowledge and experience
using this technique, the experimental ensemble is shown
to improve the numerical forecasts of severe weather,
arguably because it successfully generates dispersion over
the areas of concern selected by the forecaster. However,
the experimental ensemble forecasts of low probability
severe weather have less skill than those of the SREF and
operational Eta. A clear conclusion from these results is
that this ensemble, customized to exclusively focus on high-
intensity and damaging weather, lacks global dispersion and
produces unreliable forecasts for non-hazardous weather
events. Results from an ensemble constructed by combining
globally perturbed members (from SREF) and humanly
perturbed members (from MM5ADJ) show promising skill
for the forecast of severe weather. While the experimental
set up was not perfect, the results indicate that the value of
human beings in the creation of ensembles designed to target
specic weather threats is potentially large.

Further investigation of the potential value of humans
being part of the ensemble process is strongly recommended,
even if the end result is to learn how forecasters can provide
real- time input into an automated ensemble generation
system. We still have a lot to learn about how to create
ensembles for short-range forecasts of high impact weather,
and we need to make better use of the skill and experience
of human forecasters in this learning process.
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